How to connect to a MySQL database
This guide will help you connect to data in a MySQL database. This will allow you to validate and explore your data.
Prerequisites: This how-to guide assumes you have:
- Completed the Getting Started Tutorial
- Have a working installation of Great Expectations
- Have access to data in a MySQL database
#
Steps#
1. Choose how to run the code in this guideGet an environment to run the code in this guide. Please choose an option below.
- CLI + filesystem
- No CLI + filesystem
- No CLI + no filesystem
If you use the Great Expectations CLI, run this command to automatically generate a pre-configured Jupyter Notebook. Then you can follow along in the YAML-based workflow below:
great_expectations datasource new
If you use Great Expectations in an environment that has filesystem access, and prefer not to use the CLI, run the code in this guide in a notebook or other Python script.
If you use Great Expectations in an environment that has no filesystem (such as Databricks or AWS EMR), run the code in this guide in that system's preferred way.
#
2. Install required dependenciesFirst, install the necessary dependencies for Great Expectations to connect to your MySQL database by running the following in your terminal:
pip install sqlalchemypip install PyMySQL
#
3. Add credentialsGreat Expectations provides multiple methods of using credentials for accessing databases. Options include using a file not checked into source control, environment variables, and using a cloud secret manager. Please read the article How to Configure Credentials for instructions on alternatives.
For this guide we will use a connection_string
like this:
mysql+pymysql://<USERNAME>:<PASSWORD>@<HOST>:<PORT>/<DATABASE>
#
4. Instantiate your project's DataContextImport these necessary packages and modules.
from ruamel import yaml
import great_expectations as gefrom great_expectations.core.batch import BatchRequest, RuntimeBatchRequest
Load your DataContext into memory using the get_context()
method.
context = ge.get_context()
#
5. Configure your Datasource- YAML
- Python
Put your connection string in this template:
datasource_yaml = """name: my_mysql_datasourceclass_name: Datasourceexecution_engine: class_name: SqlAlchemyExecutionEngine connection_string: mysql+pymysql://<USERNAME>:<PASSWORD>@<HOST>:<PORT>/<DATABASE>data_connectors: default_runtime_data_connector_name: class_name: RuntimeDataConnector batch_identifiers: - default_identifier_name default_inferred_data_connector_name: class_name: InferredAssetSqlDataConnector name: whole_table"""
Run this code to test your configuration.
context.test_yaml_config(datasource_yaml)
Put your connection string in this template:
datasource_config = { "name": "my_mysql_datasource", "class_name": "Datasource", "execution_engine": { "class_name": "SqlAlchemyExecutionEngine", "connection_string": "mysql+pymysql://<USERNAME>:<PASSWORD>@<HOST>:<PORT>/<DATABASE>", }, "data_connectors": { "default_runtime_data_connector_name": { "class_name": "RuntimeDataConnector", "batch_identifiers": ["default_identifier_name"], }, "default_inferred_data_connector_name": { "class_name": "InferredAssetSqlDataConnector", "name": "whole_table", }, },}
Run this code to test your configuration.
context.test_yaml_config(yaml.dump(datasource_config))
You will see your database tables listed as Available data_asset_names
in the output of test_yaml_config()
.
Feel free to adjust your configuration and re-run test_yaml_config()
as needed.
#
6. Save the Datasource configuration to your DataContextSave the configuration into your DataContext
by using the add_datasource()
function.
- YAML
- Python
context.add_datasource(**yaml.load(datasource_yaml))
context.add_datasource(**datasource_config)
#
7. Test your new DatasourceVerify your new Datasource by loading data from it into a Validator
using a BatchRequest
.
- Using a SQL query
- Using a table name
Here is an example of loading data by specifying a SQL query.
batch_request = RuntimeBatchRequest( datasource_name="my_mysql_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="default_name", # this can be anything that identifies this data runtime_parameters={"query": "SELECT * from taxi_data LIMIT 10"}, batch_identifiers={"default_identifier_name": "default_identifier"},)context.create_expectation_suite( expectation_suite_name="test_suite", overwrite_existing=True)validator = context.get_validator( batch_request=batch_request, expectation_suite_name="test_suite")print(validator.head())
Here is an example of loading data by specifying an existing table name.
batch_request = BatchRequest( datasource_name="my_mysql_datasource", data_connector_name="default_inferred_data_connector_name", data_asset_name="taxi_data", # this is the name of the table you want to retrieve)context.create_expectation_suite( expectation_suite_name="test_suite", overwrite_existing=True)validator = context.get_validator( batch_request=batch_request, expectation_suite_name="test_suite")print(validator.head())
ππ Congratulations! ππ You successfully connected Great Expectations with your data.
#
Additional NotesTo view the full scripts used in this page, see them on GitHub:
#
Next StepsNow that you've connected to your data, you'll want to work on these core skills: