How to connect to data on GCS using Pandas
This guide will help you connect to your data stored on GCS using Pandas. This will allow you to validate and explore your data.
Prerequisites: This how-to guide assumes you have:
- Completed the Getting Started Tutorial
- Have a working installation of Great Expectations
- Have access to data on a GCS bucket
#
Steps#
1. Choose how to run the code in this guideGet an environment to run the code in this guide. Please choose an option below.
- CLI + filesystem
- No CLI + filesystem
- No CLI + no filesystem
If you use the Great Expectations CLI, run this command to automatically generate a pre-configured Jupyter Notebook. Then you can follow along in the YAML-based workflow below:
great_expectations datasource new
If you use Great Expectations in an environment that has filesystem access, and prefer not to use the CLI, run the code in this guide in a notebook or other Python script.
If you use Great Expectations in an environment that has no filesystem (such as Databricks or AWS EMR), run the code in this guide in that system's preferred way.
#
2. Instantiate your project's DataContextImport these necessary packages and modules.
from ruamel import yaml
import great_expectations as gefrom great_expectations.core.batch import Batch, BatchRequest, RuntimeBatchRequest
Load your DataContext into memory using the get_context()
method.
context = ge.get_context()
#
3. Configure your DatasourceGreat Expectations provides two types of DataConnectors
classes for connecting to GCS: InferredAssetGCSDataConnector
and ConfiguredAssetGCSDataConnector
- An
InferredAssetGCSDataConnector
utilizes regular expressions to inferdata_asset_names
by evaluating filename patterns that exist in your bucket. ThisDataConnector
, along with aRuntimeDataConnector
, is provided as a default when utilizing our Jupyter Notebooks. - A
ConfiguredAssetGCSDataConnector
requires an explicit listing of eachDataAsset
you want to connect to. This allows for more granularity and control than itsInferred
counterpart but also requires a more complex setup.
As the InferredAssetDataConnectors
have fewer options and are generally simpler to use, we recommend starting with them.
We've detailed example configurations for both options in the next section for your reference.
Authentication
It is also important to note that GCS DataConnectors
support various methods of authentication. You should be aware of the following options when configuring your own environment:
gcloud
command line tool /GOOGLE_APPLICATION_CREDENTIALS
environment variable.- This is the default option and what is used throughout this guide.
- Passing a
filename
argument to the optionalgcs_options
dictionary.- This argument should contain a specific filepath that leads to your credentials JSON.
- This method utilizes
google.oauth2.service_account.Credentials.from_service_account_file
under the hood.
- Passing an
info
argument to the optionalgcs_options
dictionary.- This argument should contain the actual JSON data from your credentials file in the form of a string.
- This method utilizes
google.oauth2.service_account.Credentials.from_service_account_info
under the hood.
Please note that if you use the filename
or info
options, you must supply these options to any GE objects that interact with GCS (i.e. PandasExecutionEngine
).
The gcs_options
dictionary is also responsible for storing any **kwargs
you wish to pass to the GCS storage.Client()
connection object (i.e. project
)
For more details regarding storing credentials for use with Great Expectations see: How to configure credentials
For more details regarding authentication, please visit the following:
Using these example configurations, add in your GCS bucket and path to a directory that contains some of your data:
- Inferred + Runtime (Default)
- Configured
- YAML
- Python
datasource_yaml = fr"""name: my_gcs_datasourceclass_name: Datasourceexecution_engine: class_name: PandasExecutionEnginedata_connectors: default_runtime_data_connector_name: class_name: RuntimeDataConnector batch_identifiers: - default_identifier_name default_inferred_data_connector_name: class_name: InferredAssetGCSDataConnector bucket_or_name: <YOUR_GCS_BUCKET_HERE> prefix: <BUCKET_PATH_TO_DATA> default_regex: pattern: (.*)\.csv group_names: - data_asset_name"""
Run this code to test your configuration.
context.test_yaml_config(datasource_yaml)
datasource_config = { "name": "my_gcs_datasource", "class_name": "Datasource", "execution_engine": {"class_name": "PandasExecutionEngine"}, "data_connectors": { "default_runtime_data_connector_name": { "class_name": "RuntimeDataConnector", "batch_identifiers": ["default_identifier_name"], }, "default_inferred_data_connector_name": { "class_name": "InferredAssetGCSDataConnector", "bucket_or_name": "<YOUR_GCS_BUCKET_HERE>", "prefix": "<BUCKET_PATH_TO_DATA>", "default_regex": { "pattern": "(.*)\\.csv", "group_names": ["data_asset_name"], }, }, },}
Run this code to test your configuration.
context.test_yaml_config(yaml.dump(datasource_config))
- YAML
- Python
datasource_yaml = f"""name: my_gcs_datasourceclass_name: Datasourceexecution_engine: class_name: PandasExecutionEnginedata_connectors: configured_data_connector_name: class_name: ConfiguredAssetGCSDataConnector bucket_or_name: <YOUR_GCS_BUCKET_HERE> prefix: <BUCKET_PATH_TO_DATA> default_regex: pattern: data/taxi_yellow_tripdata_samples/yellow_tripdata_sample_(\\d{{4}})-(\\d{{2}})\\.csv group_names: - year - month assets: taxi_data:"""
Run this code to test your configuration.
context.test_yaml_config(datasource_yaml)
datasource_config = { "name": "my_gcs_datasource", "class_name": "Datasource", "execution_engine": {"class_name": "PandasExecutionEngine"}, "data_connectors": { "configured_data_connector_name": { "class_name": "ConfiguredAssetGCSDataConnector", "bucket_or_name": "<YOUR_GCS_BUCKET_HERE>", "prefix": "<BUCKET_PATH_TO_DATA>", "default_regex": { "pattern": "data/taxi_yellow_tripdata_samples/yellow_tripdata_sample_(\\d{4})-(\\d{2})\\.csv", "group_names": ["year", "month"], }, "assets": {"taxi_data": None}, } },}
Run this code to test your configuration.
context.test_yaml_config(yaml.dump(datasource_config))
If you specified a GCS path containing CSV files you will see them listed as Available data_asset_names
in the output of test_yaml_config()
.
Feel free to adjust your configuration and re-run test_yaml_config()
as needed.
#
4. Save the Datasource configuration to your DataContextSave the configuration into your DataContext
by using the add_datasource()
function.
- YAML
- Python
context.add_datasource(**yaml.load(datasource_yaml))
context.add_datasource(**datasource_config)
#
5. Test your new DatasourceVerify your new Datasource by loading data from it into a Validator
using a BatchRequest
.
- Specify a GCS path to single CSV
- Specify a data_asset_name
Add the GCS path to your CSV in the path
key under runtime_parameters
in your RuntimeBatchRequest
.
Please note we support the following format for GCS URL's: gs://<BUCKET_OR_NAME>/<BLOB>
.
batch_request = RuntimeBatchRequest( datasource_name="my_gcs_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="<YOUR_MEANGINGFUL_NAME>", # this can be anything that identifies this data_asset for you runtime_parameters={"path": "<PATH_TO_YOUR_DATA_HERE>"}, # Add your GCS path here. batch_identifiers={"default_identifier_name": "default_identifier"},)
Then load data into the Validator
.
context.create_expectation_suite( expectation_suite_name="test_suite", overwrite_existing=True)validator = context.get_validator( batch_request=batch_request, expectation_suite_name="test_suite")print(validator.head())
Add the name of the data asset to the data_asset_name
in your BatchRequest
.
batch_request = BatchRequest( datasource_name="my_gcs_datasource", data_connector_name="default_inferred_data_connector_name", data_asset_name="<YOUR_DATA_ASSET_NAME>",)
Then load data into the Validator
.
context.create_expectation_suite( expectation_suite_name="test_suite", overwrite_existing=True)validator = context.get_validator( batch_request=batch_request, expectation_suite_name="test_suite")print(validator.head())
ππ Congratulations! ππ You successfully connected Great Expectations with your data.
#
Additional NotesIf you are working with nonstandard CSVs, read one of these guides:
- How to work with headerless CSVs in pandas
- How to work with custom delimited CSVs in pandas
- How to work with parquet files in pandas
To view the full scripts used in this page, see them on GitHub:
- inferred_and_runtime_yaml_example.py
- inferred_and_runtime_python_example.py
- configured_yaml_example.py
- configured_python_example.py
To review the source code of these DataConnectors
, also visit GitHub: